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The distorted wave Glauber approximation 
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Received 15 September 1977, in final form 30 January 1978 

Abstract. A solution of the Pauli equation with non-zero potentials defines quantum 
scalar and vector potentials and magnetic fields and quantum trajectories. If a line integral 
of perturbing potentials and fields along these quantum trajectories is added to the phase 
of this solution, an approximate solution of the perturbed equation is found. Glauber 
theory is a special case and the conditions of applicability are similar. Applications given 
start from the harmonic oscillator and from a homogeneous magnetic field and add a 
perturbation. 

1. Introduction 

The quantum forces defined in 0 2 are as old as quantum mechanics (de Broglie 1930) 
and persist to the present day in attempts to provide a mechanistic or hydrodynamical 
explanation of quantum mechanics. Section 5 which introduces quantum vector 
potentials in such a treatment of the Pauli equation may be regarded as a contribution 
to this study. 

Our interest in the quantum potential V J x )  is, however, in retaining the quantum 
or interference aspects of the known solution a ( x )  eiS(+)'* of the Schrodinger equation 
with potential V ( x ) .  The Schrodinger equation is entirely equivalent to a coupled pair 
of equations: the Hamilton-Jacobi (HJ) equation with a quantum potential Vq(x) in 
addition to V ( x ) ;  and the continuity equation. The HJ equation can be regarded as 
determining the phase S(x) and the continuity equation as determining the amplitude 
a ( x )  or the current density a2(x )VS(x) /m.  But they are coupled because the quantum 
potential 

h2 1 
Vq(X) = - - V2a (x) 

2m a ( x )  

depends on U (x) and the current depends on S(x). 
It may happen that the potential v(x) in the Schrodinger equation is too large for 

the Glauber approximation to be used, but that we can exactly solve the scattering 
problem for the potential V ( x )  which differs from Q(x) in the neighbourhood of x = 0 
but not asymptotically. 

The transition amplitude 

F k + k '  = (e-ik"xl p(x)l(bf;) (1.2) 

fi$i = E J i  (1.3) 
where 
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1088 F Riordan 

In Q 2 we shall approximate 4; (x) the only unknown in (1.5) by 4; (x) modulated 
by a factor exp[( i /h)r  m(v- V)(VS .  VS)-’” dl)] where the line integral is taken 
along the trajectory tangent to VS(x), of a particle which experiences a ‘quantum 
force’ in addition to -VV(x). The approximation is valid provided v(x)- V ( x )  is a 
smooth function. Since this function is zero asymptotically the smoothness condition 
restricts the magnitude of Q(x)- V ( x )  compared with the kinetic energy VS. V S / 2 m .  
The modulating factor is unity, to the asymptotic side of some surface, the crest of an 
incoming wave say, so that corrections to the backward scattering have been neglec- 
ted. This is a high energy forward scattering approximation and reduces to Glauber’s 
(1958) when V ( x )  is zero (then the trajectories are straight lines). It differs from the 
classical approximation (WKB) in that (i) it includes, by means of the quantum poten- 
tial for V ( x )  and $;(x), the interference effects appropriate to V ( x )  and (ii) the line 
integrals are not along the classical trajectories but along quantum trajectories which 
take the ‘quantum force’ into account. It differs from the modifications of Glauber 
theory which replace his straight line trajectories, along which v is integrated, by the 
classical trajectories for v(x). We suggest that these modifications have been less 
successful than pure Glauber theory because Glauber’s straight trajectories are quan- 
tum trajectories for the case V = 0 (because a (x) is constant and V,(x) zero) whereas 
the classical trajectories lack information on the quantum aspects of the unperturbed 
as well as the perturbed system. 

Absorptive parts to the potentials are introduced in § 3 leading to slight 
modifications of the results of § 2. The application to separable potentials is discussed. 

The time dependent problem is tackled in § 4 in the presence of vector and scalar 
potentials and applied to perturbations of an harmonic oscillator. In § 5 quantum 
vector potentials and independent magnetic fields are introduced in order to accom- 
modate spin and in § 6 the method is used to treat the time independent spin case; the 
time dependent case is in the appendix. The scattering of a charged particle with spin 
undergoing a nuclear force with spin-orbit coupling and exchange in the presence of a 
strong homogeneous magnetic field is treated in Q 7. This problem is of interest in 
neutron stars. 

2. The Schrodinger equation 

The Schrodinger equation 

is satisfied by 



The distorted wave Glauber approximation 1089 

with real functions a(x) ,  S(x) if and only if 

V S . V S + 2 m V - h 2 a P 1  V Z a  = 2 E m  

v . ( a Z V S )  = o 
and 

simultaneously. Equation (2 .3)  may be interpreted as the Hamilton-Jacobi (HJ) 
equation for the 'momentum' VS(x) at x in the presence of a quantum force 

Va-'Vza in addition to the classical force -VV and (2.4) as the continuity 2 
equation for the density a 2 ( x )  of particles moving with velocity field m-'VS(x)  in this 
force field. 

For the Schrodinger equation with potential Q(x) the equation will have a 
different classical and quantum potential. We look for that solution which is equal to 
$(x) in the incoming asymptotic region, say 

1 pm-l 

9 w  = *(x) along S(x) = c (2 .5)  

the HJ equation is 

and the continuity equation 

V. [ (a + a 1 ) ' v S ]  = 0. 

We can decouple the HJ and continuity equations if in the HJ equation we make the 
ansarz I of neglecting a l  and in the continuity equation we make the ansatz II of 
insisting that surfaces of constant S(x) are also surfaces of constant S(x): 

VQX) = f ( S ( x ) ) V S ( x ) .  (2.10) 

These ansutze are consistent with the asymptotic conditions (2.5) and (2 .6)  iff  is one 
asymptotically. 

We shall now show that ansiitze I and I1 may both be used consistently in both 
equations (2 .8)  and (2.9),  provided f is given by 

1 - f ' (~(x))= 2 m ( Q ( x ) -  V(X))/(VS(X))~ (2.1 1 )  

and its gradient along VS is negligible. This in turn puts a restriction on the type of 
potential Q(x) which may be treated by the method. 

Imposing both ansufze 

J ( x )  = a ( x )  exp(ih-'S(x)) 

where $(x) satisfies (2.10). The HJ equation 

Vs'. Vs'+ 2m( e- E ) -  h2a-'V2a = 0 

(2.12) 

(2 .13)  

will be satisfied by virtue of (2.3) and (2.10) iff is given by (2.11). Using (2.10) the HJ 
equation has the solution 

s(x)-c = (2m)"' I* ( E  - + f hZm-1a-1VZa)1/2 dl  (2.14) 



1090 F Riordan 

where the reduced action integral is taken along the path tangent to VS(x), from x to 
the point where this path crosses S(x) = c, and dl is the increment of length along the 
path. 

Using (2.4) and (2.10) 

v . (a2VS) = a2VS.  Vf (2.15) 

so that if the gradient of (2.11) along VS(x) is negligible the continuity equation 

V. (a2VS)= 0 (2.16) 

is satisfied. This taken together with (2.13) implies that (2 of (2.12) satisfies the 
Schrodinger equation 

(2.17) 

The conditions that g(x) must satisfy in order that the ansuitre I and I1 may be 
valid, i.e. that $ given by (2.12) and (2.10) may satisfy the Schrodinger equation (2.17) 
with the asymptotic behaviour (2.5), (2.6), are as follows. v(x)  must not differ 
asymptotically from V(x), in order that f may be one asymptotically and so (2.10) may 
be consistent with (2.5) and (2.6). 

The component of the force -VV(x) perpendicular to VS(x) must be approxi- 
mately -f2(S(x))V, V ( x )  in order to balance the increased centrifugal force, if 
assumption (2.10) is to hold good: 

v,Q(x)-f2VIV(X)<< VS(x). VS(x)/2mL (2.18) 

where L is the typical length of a path tangent to VS(x) through the region in which 
v(x) and V(x) differ. A second smoothness condition on the potentials, since the 
gradient of f(x) along S(x) must be negligible, is 

-fitj(x)= (1 fi2m-'V2 - Q(x))tj(x) = -E$(x) .  

LVS(X) . V2m ( V ( x ) -  v(x))/(vs(x))2 << IVS(X)( (2.19) 

in order that (2.16) be approximately satisfied. Since Q(x)- V(x) is asymptotically 
zero this smoothness condition prevents 1 -f2 from becoming large anywhere: 

l-f2(S(x))= 2m(V(x)- v(x))/(vs(x))2<< 1.  (2.20) 

We shall now work to first order in 1 -f(S(x)), which, for L sufficiently large, allows us 
consistently to work to zero order in the gradients in (2.18) and (2.19), so that the 
continuity equation (2.16), and the solution (2.14) of the HJ equation, are valid. 

To first order in 1 -f this solution (2.14) becomes 

S ( x ) = S ( x ) - l ' m ( P ( x ) -  V(x))IVS(x)I-'dl (2.21) 

where we have used the HJ equation (2.3) and its exact solution 

S(x)-c = (2m)'" (E  - V + f h2m-'a-'V2a)"2 dl (2.22) 

called the abbreviated action or the integral of Maupertuis. 
The integration in (2.21) and (2.22) is taken over the quantum trajectory, that is 

the path derived from the HJ equation (2.3) which includes a quantum potential. If 
this quantum potential were neglected (2.2) would be the WKB approximation. 
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The Glauber approximation is the particular case where V(x)= 0, so that the 
trajectories are straight lines, parallel to the z axis say, then S(x) is hkr, a ( x )  is unity 
and 

S(b, z )  = S(b, 2)- m dz'  Q(b + nz ' ) /hk  (2.23) 

where n is a unit vector in the z direction and 6 is the impact parameter and lies in the 
x - y  plane. 

IZ 

3. Absorptive and separable potentials 

It is evident from our analysis in 0 2 that 0 may be allowed to be complex. If we add 
an imaginary potential -iV, to V however it appears as an absorption term pro- 
portional to the density a' on the right of (2.4) 

h ~ .  (a'VS)= -2ma2v,. (3.1) 

h ~ .  (a'VS)= -2ma2fv,. (3.2) 

1 m-'V$. V$+ V -  (1 - f)iV, -E -ih'm-'a-'V'a = 0 (3.3) 

Thus 

So the modified HJ equation 

must hold in order that 9 satisfy the Schrodinger equation (2.17). The equation for 
1 -f becomes 

tm-'(1-f2)(VS)'+(1-f)iV~ = Q- v (3.4) 

1-f= (Q- v)/[~- '(VS)'+~V,] (3.5) 

or 

to first order in 1 - f and (2.21) becomes 

S(x) = S(x)- I* m( Q - V - (1 - f)i V,)/VSI-' dl. (3.6) 

The method can now be used even when V is non-local, for example a separable 
potential; for a given E and a given incoming wave, the potential can be represented 
by a complex local potential. For example, the separable potential 

(plVlq)= -~A(p2+p2) - ' (4 '+P2) - 'm- '  (3.7) 
for energy 4 kzm-'h2 has the solution given by Yamaguchi (1954) 

(3.8) 

(3.9) 

-1  $(x)o~ exp(ikz)+ [exp(ik . x)- exp(-pr)]gkr 

where 

g;' = -ik - p + 4 (p2 + k ' )p - '+  (p + k 2)2(2~2A )-'. 

The same $(x) is a solution of the Schrodinger equation with the local potential V(x) 
where 

(3.10) V(X) = gkm-'r-'f U'+ k2)h2 exp(-pr). 
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Numerical tests of the method in this case by Atkin (1977) encourage us to try the 
method in the three-particle problem starting from the solution with pure separable 
two-particle potentials and adding a perturbation which makes them realistic. This 
should be sensitive to other aspects of the potentials than those tested by the Faddeev 
equations containing separable terms and a remainder (Alt et a1 1967, Riordan 1968). 
It solves the three-particle Schrodinger equation directly and the only increase in 
complexity is that the points at which the wavefunction is to be calculated span a 
nine-dimensional space. The quantum trajectories in the nine-dimensional space are 
still defined paths (one-dimensional). 

4. Time dependence. Vector potentials 

4.1. The coupled HI and continuity equations 

We shall suppose in this section that we know the solution 

4(x, t )  = a(x, t )  exp(iS(x, t ) l h )  

ih a$(x, t ) =  [$m-'(-ihV-eA(x, r))'+eV(x, t ) ]+(x,  t )  

(4.1) 

(where a(x, r )  and S(x, t )  are real functions) of the Schrodinger equation 

(4.2) 

(a is the partial derivative with respect to t). Then a(x, r )  and S(x, t) satisfy the 
coupled equations 

m da'(x, t ) + V .  [(VS(x, t)-eA(x, t))a2(x, t ) ]  = 0, (4.3) 

(4.4) 2m aS(x, t )+ (VS(x ,  t)-eA(x, t ) )*+2meV(x,  t ) -h2a-'(x,  t)Vza(x, t ) = O .  

We shall interpret (4.4) as the HJ equation for a particle of charge e in a scalar 
potential V(x,  t)-h2a-'(x,  t)V'a(x, t)/me, and a vector potential A(x, t). 

The particular solution, Hamilton's principal function S(x, t), defines a bundle of 
world lines x i ( t ) ,  one through each point in coordinate space at time t, and may be 
written in terms of the action along them: 

S(x, t)-ci = [$m(i i ( t ) ) ' -eV(x,  t)-$h*m-'a-'(x,  t)V2a(x, t)+eA(x, t ) . X i ( r ) ] x i ~ , l  dt I: 
(4.5) 

ci = S(xi(ti), ti), (4.6) 
ti is a time when xi(t i)  is asymptotic and x i ( t )  is a world line of a particle which moves 
under the influence of these potentials and contains the event x, t. That is 

x = X i ( t )  

m i i ( t )  = [VS(x, t ) -  eA(x, t)Ixi(,). 

We note in passing that the quantum potential is zero if a(x, t )  is a function of time 
only, as for the propagator when the scalar potential is quadratic and the vector 
potential zero. The exact solution in this case (Morette 1951, Pauli 1973, Feynman 
and Hibbs 1965) is 

4(x, t)= a ( t )  exP(iScl(x, t ) l h )  (4.9) 
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where S&, t )  is calculated without a quantum potential and a ( t )  depends on the 
coefficient of the quadratic term in normal coordinates. This is the case when the WKB 
approximation is exact and the Feynman sum over paths may be replaced by a 
contribution of the classical path multiplied by a ( r ) .  

4.2. The approximation 

In approximating the solution of the perturbed system with potentials Q(x, t ) ,  A ( x ,  t )  
we shall suppose that the new world lines are x i (e i ( t ) )  where 

1 - b W =  2me[(%, t > -  W ,  ~>(vs(x, e ) ) - e A ( x ,  w2~si(e).e,(f), 
(4.10) 

that is, the same trajectories as in the unperturbed system, but traversed at a different 
speed, so that a particle reaches a point on the trajectory x i ( t )  at time O i ( t ) ,  whereas it 
reached the same point at time t in the unperturbed system 

Vs(x, t ) -  eA(x,  t )  = mx;bi = b(x,  t ) [VS(x,  6)- eA(x,  19) ]~ (~ ,~ )  (4.11) 

ei ( t o )  = t o  

where the prime denotes differentiation with respect to 8 and we have defined 

e(x, t )  = ei(t) 

b(x,  t )  = e&) 

for x, t on x i ( t )  

for x, t on xi(t) 
and 

(4.12) 

(4.13) 

the dot denoting differentiation with respect to t and the subscript e(x, t )  indicates 
here and throughout this paper that the gradient is to be taken with 8 considered an 
independent variable, which is then set equal to e(x, t ) .  

Further suppose that the energy at a point on the trajectory is the same in the 
perturbed and unperturbed systems 

(4.14) 

where de is the partial derivative with respect to 8. Then (4.10), (4.11) and the HJ 
equation (4.4) imply 

2m as"(x, t)+(VS(x, t ) - e A ( x ,  t)12+2meQ(x, r ) -h* [a- ' (x ,  e)v2a(x, e)]e(s, t )=~.  

The Hamilton principal function s(x, t )  defined for x, t on the world line x i (e i ( t ) )  by 

S(x, t ) - c i  = [Im(.i i(ei(t)))'-eV(x, t ) -4hZm-'  (a-'(x, e)v'a(x, 6)) 

a%, t )  = [sax, e ) ~ ~ ( ~ . ~ ,  

(4.15) 

I 
+ eA(x,  t ~ i ( e i ( t ) ) l x ( e ) . e i ( r )  dt  (4.16) 

is a solution of the HJ equation (4.15) because of (4.11) and (4.12). We use the same ci 
as (4.6) since xi(t i)  is outside the range of the perturbation, in which case 

e&()= 1.  (4.17) 

The centrifugal force is increased by a factor #(x, t ) ,  so, to keep the trajectories as 
we have assumed in (4.1 l), the perpendicular component of the force must satisfy 

(4.18) 
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(where the magnetic fields W and are respectively the curl of A and A) as a 
constraint on the perturbation. As a further constraint we may demand that Ve(x, t )  is 
negligible in the parallel direction 

ve(x, t ) =  , c , ~ ~  (Oj(t)-ei(t))/Ikl (4.19) 

where x, t is on x i (e i ( t ) )  and x + k, t is on xj(ej(t)).  
Through any point x, we may plot a path in coordinate space always tangent to 

VS(x, t l ) - e A ( x ,  r l )  and this path will pass into a region where the perturbation is 
zero, and e(x, t )  is just t .  If e(x, t l )  does not change much along this curve it must 
remain nearly tl for all x. Thus 

1 - B(x, t)cc 1. (4.20) 

We shall work to first order in 1 - b(x,  t )  and zero order in the parallel component of 
VO(x, t ) ,  whenever the length L of the typical path through the region of non-zero 
perturbation is large: 

To this accuracy: 

(4.21) 

(4.22) 

(4.23) 

using the continuity equation (4.3) and (4.11); 

using (4.10) and (4.20); and (4.16) becomes 

x [ i m ( x ' ) 2 + e V ( x ,  8)-$hzm-'a- ' (x ,  e)V2a(x, O)]xi(e)de (4.26) 
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(4.27) 

is a function of x as well as of r by virtue of the fact that for a given x the particular 
path xi(ei(t)) to be used in the integral, is the one which contains the event x, t. 

The expression for the energy in the unperturbed system at position x and time 8 is 

a&(,, e)=  $m(x')'+eV(x, e)-$i i2m-'a- ' (x ,  e)v2a(x, e). (4.28) 

Thus (4.26) may be written using (4.5) and (4.14) and neglecting the term of order 
(1 - 8)' as 

~ ( x ,  t ) -  jr a~(x ,  t )  dt  = s(x, e(x, t ) ) -  J 
rt r, 

with $(x, t )  defined by (4.29) and (4.14) 

O k t )  

[a,s(X, de  + P ( X ,  t ) .  (4.29) 

The HJ equation (4.15) and the continuity equation (4.23) together ensure that 

&x, t )  = a(x ,  e(x, t)> exp(iS(x, t ) / h )  (4.30) 

satisfies the Schrodinger equation 

ifi a&x, t )  = [f m-'(-iiiV - e A ( x ,  t))'+ eQ(x, t ) ]3 ; (x ,  t )  (4.31) 

to first order in 1 - 8(x, t )  and zero order in the parallel component V8(x, t )  given in 
equation (4.21). 

In addition to the smoothness condition (4.18) another condition 

aP(x, t )  = 0 (4.32) 

must be satisfied (we work to zero order in the correction aP) if (4.29) is to be 
consistent with (4.14). This requires that the time dependence of A(x, t)-A(x, &(t) )  
and v(x, t ) -  v(x, e,(?)) is just sufficient to compensate for the fact that different 
trajectories pass through x at different times when A and V are time dependent. 

The time independent case is, of course, much simpler as none of the functions 
depend on t or on 8 except trivially 

S(x, t ) = S ( x ) - E t  (4.33) 

a& t )  = ad(,, e) = -E (4.34) 

S(x, t )  = S(x) - Et (4.35) 

~ ( x )  = s(x)+ e (A (x)- ~ ( x ) ) .  d~ - e Jx ( ~ ( x )  - ~ ( x ) )  dr (4.36) 

where the line integrals are along the trajectory x i ( t )  which runs from x back into the 
asymptotic region. When 

S 
A(x) = A(x)  = 0 (4.37) 

equation (4.36) gives the result (2.21). 
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4.3. The perturbed harmonic oscillator 

As a simple illustration of the time dependent method we take the harmonic oscillator 

e v ( x >  = 4 mw2x2 (4.38) 

as our unperturbed system, 

4(x, t )  = (mw/2.rrih sin ~ 0 t ) ~ ”  exp{imw[(x2 +xi) cos w t -  2x. xol/2h sin w t }  (4.39) 

is a solution, of the form (4.9), of the Schrodinger equation for positive t, away from xo 
(Feynman and Hibbs 1965). 

(4.40) VS(x, t )  = mw (x cos wt  -xo)/sin wt 

so the quantum paths, which in this case are also classical, are 

x ( t )  = xo cos ut + b sin wt. (4.41) 

Along this path 

VS(X, t)l,(t) = mw (b cos wt  - xo sin w t )  (4.42) 

as(x, t)I,(,)= - $ m w 2 ( b 2 + x 3 .  (4.43) 

The solution of the Schrodinger equation for a potential Q(x, t) which differs from 
V ( x )  only away from XO, which equals $(x, t )  near xo is 

&x, t )=  +(x, ei(t))exp ih-’ d r  [eQ(x(.r) ,7)-4mw2xZ(ei( .r))]  irb 
(4.44) 

t - e i ( r ) = ~ t ( e m - l w - z ~ ( x ( t ) ,  0 t ) - ~ x 2 ( ~ i ( t ) ) ) ( x o s i n w t - b  c o s ~ t ) - ~ d t  (4.45) 

and ~ ( t )  is given by (4.41) with b chosen so that 

x(t) = x. (4.46) 

$(x, t) is the kernel or propagator K(x ,  t ;  XO, 0) for the harmonic oscillator and J(x, t) 
shares its singular behaviour near xo at t = 0, therefore 

R(x, t ;  xo, o)= &x, t )  (4.47) 

is the kernel for the potential Q(x, t ) .  
In this example the exact solution of the unperturbed problem is given by the 

quasi-classical (WKB) approximation: neglecting the quantum potential. In general 
the semi-classical approximation 

(4.48) 

for the potential V(x,  t )  is the exact quantum mechanical solution for some potential 
V(x, t)+ Vp(x, r )  where Vp(x, t) is complex and Vp(x)  is the coefficient of $(x, t )  in the 
remainder when $(x, t )  is inserted in the Schrodinger equation for V(x,  t). 

Vp(x, t) may be treated as a perturbation of V(x,  t) by the distorted wave Glauber 
approximation presented in §§ 3 and 4. As the method is readily extended to field 
theory one might start from the classical magnetic monopole solution of a unified 

4(x, t> = a b ,  t )  exp(iS&, t Y h )  
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gauge theory ('t Hooft 1974) and quantise approximately by the semi-classical (WKB) 

method. The result viewed as a solution of some quantum field theory may be 
perturbed into a solution of the unified gauge theory by the above argument. 

5. Spin and quantum vector potentials 

The Pauli equation 

ifi aI)(x, t ) =  [im-'(-ihV-eA(x, t))'+eV(x, f)-iehm-'o.  H(x, t)]I)(x, t) (5.1) 

may be written with 

+(x, t )  = a (x, t )  exp(ifi-'S(x, t))+ (x, t )  

where a (x, t) and S(x, t) are real functions and 4 (x, t )  is a spinor of unit magnitude 

4+(X, M ( x ,  0'1 (5.3) 
as 

([[as+hm-'(VS-eA)'+eV]~$ -~ifia-'{aa2+m-'V. [a2(VS-eA)]}4 

- [ih a4 +ihm-'(VS - eA) . V# + f e f i m - ' ~ .  H4 
+ f f i 'm- 'a- '~*a4]~ = 0. (5 *4) 

This becomes 

[as + 4 m-'(VS -eA)'+eV+ eVq]4 - i i f i ~ - ~ [ ~ a ~  + m-'V. a'(VS - eA - eAq)]4 

-[ifi 84 +ifim-'(VS -eA). V4 + 4 e f i m - l ~ .  ( H +  Hq)4] = 0 ( 5 . 5 )  
when we uset 

~ ~ ~ A Z m - ' V Z a 4 + ~ i f i e m - ' a - ' 4 V .  aZA,+eVqa4-iehm- 'aa .  Hq4 = O  (5.6) 

to replace 1 fi2m-'a-'V2a4. The 'quantum potentials' are 

eAq(x, t ) =  i i W t V 4  - (~4 )+4 )  (5.7) 
eVq(x, t )  = -$i2m-'a-2(4taVZa4 +(V2a4)ta4) (5.8) 

H,.T=O (5.9) 

and the 'quantum magnetic field' is defined by 

and 

4 'auV'a4 - (V2a4)'ua4 

= ~ + u ~ P v .  ~ ' ( 4 ~ ~ 4  - ( V ~ ) t ~ ) + ~ t u x x t a ~ 2 a ~ - ( V Z a ~ ) t a X ~ t u ~  

= 2 e ( ~ ( V .  a2Aq)-a2Hqx T)/ih (5.10) 
where 

~ ( x ,  t )  = 4 t ( ~ ,  t ) a 4 ( X ,  t )  (5.11) 

t With 0, = (A -%, U, = 6 A), U, = (!i d) the proof of (5.6) is as follows. dta4 = 0 and Im t$tao,4 = 0 
which imply 4 = Dq5 where D is real and diagonal. Im q5tuux4 = 0 which implies D is a multiple of the 
identity. &'a4 = 0 then implies 4 = 0. 
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(5.12) 

so that I$ and x form a complete set in the two space at x, t. 
Thereforet xtu4 and 4tax are perpendicular to T hence the form of the second 

term in (5.10). Multiplying ( 5 . 5 )  on the left by 4'(x, t), the real and imaginary parts 
give, using (5.3), (5.7) and (5.9), the HJ equation 

(5.13) as + 3. m-'(VS -eA)'+eG. = 0 

and the continuity equation 

m aa2+v. [ a 2 ~ s - e A ) 1  = o 
where 

A = A + A ,  
I?= V +  Vq+  V , - f h m - ' r .  H - i e m - ' A q . A q .  

(5.14) 

(5.15) 

(5.16) 

(5.17) 

r X H,= - (Aq.  V)T (5.18) 

which is permissible since the change in the unit vector? c must be perpendicular to 7 ;  
we may write ( 5 . 9 ,  using (5.6), (5.13) and (5.14), in the form 

iha9+eVs4+iAm-'(VS-eA).V4 

+ ; e h m - ' ( a - r ) .  -em- ' (VS-eA) .  Aq4 = 0 (5.19) 

where 

A = H + H,+ H, (5.20) 

since using an argument similar to that in the first footnote together with (5.3), (5.7) 
and (5.18) 

(5.21) 

The Pauli equation thus implies the HJ equation (5.13), the continuity equation 
(5.14) and (5.19). Conversely these equations imply (5 .5 )  and hence (5.1). The 
imaginary part of (5.19) multiplied on the left by c$~u, provides its interpretation: 

-iheAq . VI$ + 5 e h a .  XI$ + e'A, . Aq4 = 0.  

mar + (VS -eA).  vr - e r  x A = 0 (5.22) 

the equation for the change in the magnetic moment 7 of a particle travelling along 
the classical path for the potential A, v. 

The relativistic correction to the Pauli equation -ieh2a. E x V$/4m2 already 
neglects the term proportional to A, that is -eh's. E X eA4/4m2 which appears in 
the Dirac equation. So a forriori we may neglect all quantum corrections to A in this 

t Transform to a frame in which Q'uQ is in the z direction when we have chosen 0; = (k Then Q =(A) 
or a unimodular (cf (5.3)) multiple therefore and ,yXC). Clearly lrl=lQtuQl= 1 and ,$'vZ,y = O  in this 
frame of reference. If r is a unit vector and & ' a x  is perpendicular to it in one frame of reference this is true 
in all frames. 
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term. The relativistic correction then consists in replacing H in (5.20) by H+ 
m-'VS X E or equivalently H + m-'(VS - e f f  ) x E to this degree of accuracy. 

6. The approximation with spin 

For ease of presentation the time dependent version of this section has been relegated 
to the appendix. We shall call the Pauli equation (5.1) with H, V and A replaced by 
f i ( x ) ,  v(r) and A(x), by the name ( 5 3 ) .  Its solution may be written 

i (x ) = exP(iS(x )/fila (x 14 (x 1 (6.1) 

satisfying ( 5 3 )  (which is (5.5) with V, A, H, S replaced by v(x), A(x), f i ( x ) ,  S(x)) 
where 

S(x) = S1(x)+pSs(x), (6.2) 
&(x) and &(x) are complex functions, and p is a constant matrix acting on q5(x), 
defined along with matrices D(x) and d(x) as follows 

(6.3) 

(6.4) 

04 = (ol + p ~ ~ ) +  = Aehm- ' (a - r ) .  ~4 
6 4  = (Sl +pdZ)4 = f e h m - ' ( o  - 7 ) .  &. 

We shall proceed in a manner similar to that of 80 2 and 4, assuming that the 
quantum paths for the perturbed system are the same as those for the unperturbed 
system but traversed at a different speed. We shall arrive at an expression for 
S1(x)+pS2(x) which involves an integral along these paths. Each path can be divided 
into overlapping segments, on one of which r$ is not an eigenstate of e A) and p is 
taken to be e A). On the next segment 4 is not an eigenstate of (A -1) and p is taken 
to be (A -",, and so on. Only one of these matrices is involved on any segment so no 
difficulties arise because of non-commutativity. The value of i ( x )  and its derivative in 
an overlap region is taken as the boundary condition in calculating the solution in the 
next region. Let us suppose as we did in 0 4, that 

0 

V S ( ~ >  - eA(x)  = f ( x ) ( ~ s ( x ) -  e A ( x ) )  

A =A(x)+A,(x)  (6.6) 

(6.5) 
where 

with fl(x) and f z ( x )  being complex functions smooth along the paths tangent to 
V S ( x ) - e A ( x )  

Equation (515) may be written using (6.9) and (5.6) as 

ihm-'(VS-eAq).V4+[-em-'(VS-eA).Aq(x)+fS]4 = O  (6.10) 
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if s(x) satisfies the matrix HJ equation 

4  VS - eAl2 + e t  - d +fS = o (6.11) 

with d given by (6.4) and (5.20) with H replaced by @, 
c(x)= v(x)+ Vq(x) -$hm- ' r (x ) .  f i ( x ) -  iem- 'A,(x) .  A&). (6.12) 

If (6.11) holds, the Pauli equation (575) holds since (6.10) is satisfied by virtue of (6.5) 
and the time-independent (5.19). 

The smoothness condition, which (6.5) implies for the 'potentials' which can be 
read off from the HJ equation (6.1 l), is 

~ , ( e  v - e G. - 1.3 + fi) +  em-'[^ x (A - A)] x (VS - eA)  
6 

= (f - 1)V,e Q + em-'f(f- 1)(V X A) X (VS - eff  ) - Vl(f- 1)6. (6.13) 

An expression for f(x) is found from the difference between the HJ equations: 
(6.11) and the time independent (5.13), with u ( x )  = U - ~ ( x )  

f(x> - 1 = e  VS (x) - eA (x)12 + fi (XI]-' . 
x [ V(X)- B(x)- $ h m - ' ~ ( x ) .  (H(x) -@(x) ) ]  (6.14) 

to first order in 1 -f The solution of the HJ equation (6.11) subject to the supposition 
(6.5) is, by an argument similar to that of 55 2 and 4 

s(x)= S(x)+e I' (A(x)-A(x)) .  dr - e (v(x)- V ( x ) )  dr 

+ f e h m - '  I ' u ( x ) .  (fi(x)-H(x))dt+ I' (l-f(x))d(x)dr 

the line integrals being taken along that path xi(r) which goes throu h x. 

(5.16) and (5.20) and fi by fi+m-'(VS-eA)xe in (5.5). This leads to an extra 
term e 

(6.15) 

The relativistic correction is found by replacing H by H + m- 8 (VS - eff  ) X E in 

Q(x) dr added to the right-hand side of (6.15) where 

m2Q(x)=  f h f ( x ) a ( x ) .  VS(x)x ( e ( x ) - E ( x ) ) .  (6.16) 

The (first-order) definition of f(x) is altered by adding Q(x) to V ( x )  in (6.14) since 
(6.11) has an extra term e Q  on the left. 

It should be evident from our analysis that the method of approximation in no way 
supposes that the fields H and E are related to the fields A and V. This allows us to 
generalise away from the Pauli equation viewed as an approximation to the Dirac 
equation. 

7. Homogeneous magnetic field 

As an illustration of the distorted wave Glauber approximation with spin, we shall 
take as the unperturbed system, that state of a charged, m = 1 particle in a constant 
homogeneous magnetic field 

A, = -Hy A, =A,  = O  (7.1) 
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whose Pauli equation 

has solutions a, (x) exp(ih-'S(x))(A) and a. (x) exp(ifi-'S(x))(?) where 

(7.3) an(x)=~n[(IeIHh (Y  -YO)] ~ X P [ $ I ~ W ( Y  - Y O ) ~ / ~ I  

S ( x ) = p x x + p z z  (7.4) 

Y O  = -px/eH (7.5) 

E, =(n+ i ) l e (hH+ipS  T$pHh2 (7.6) 

A,= H , =  H , =  0. (7.7) 

x = ( p x  -eHy& + X I ;  Y = y 1 ;  z =pzt+zl  (7.8) 

-1 112 

with energies 

respectively. Thus from (5.7), (5.9), (5.10), (5.17) and (5.18) 

VS - eA has components ( p x  - eHy, 0, p z )  so the path through XI is 

in parametric form. Since H ( x )  has components (O,O, H )  and ~ ( x )  components 
(0, 0, *l)  it follows from the definitions (6.3) and (6.4) that 

D(x)  = B(x) = 0. (7.9) 
Thus if the perturbation is a scalar field ev(x) and a (possibly unrelated) electric 

field &(x) we find using (6.15) and (6.16) that 

s ( x ,  y, z ) = S ( x ,  y, z)-e[ v[(p, -eHy)t +XI, y , p z r + z ~ ]  d t+$eh  [U* . p  

xZ[(p,-eHy)t+xl, ~ , p ~ t + z l l ~ [ ( p , - e H ~ ) t + x l ,  Y , P ~ ~ + Z ~ I  dt (7.10) 

where t is given by (7.8) in terms of z,  y, z a' d 

f ( ~ , y , ~ ) - l = ( h ~ * . p ~ ~ ( x , y , z ) - Q ( x ,  Y, ) ) / [ ( p x - e ~ ~ ) 2 + ~ 2 ~ ,  (7.11) 

U: is c -",, U; is (i E), and the other components of U* are U. The smoothness 
condition (6.8) is satisfied if v is smooth along the quantum path (there is a quantum 
potential V,) (7.8) and (6.13) implies V,ev has componentsf(f- 1)(0, eHp,, 0). Thus 
v ( x ,  y, z )  must be small compared to ( p x  - eHy)* +pf at (x ,  y, 2). 

This calculation meets the case of protons scattering off nuclei or neutrons in a 
neutron star where the magnetic fields can be as high as 10l2 G. The exchange force in 
np interactions can be included since the method can be used to develop the proton 
wavefunction until it enters the nuclear field and exchanges its charge. It can be used 
also to develop the wavefunction of the particle that has picked up the charge as it 
moves away from the 'stripped proton' under the influence of its nuclear field and the 
magnetic field. Spin-orbit coupling is introduced through an independent l?, for 
example 

x d V  E ( x )  = -V V(r) = -- - 
r dr (7.12) 

gives a spin-orbit term h2 d V/4m2r dr. 
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Appendix. Modifications of 8 6 for time dependence 

Functions here and in 8 6 with a become functions of x, t ;  others are the functions of 
(x, t )  in 0 5 with r replaced by e ( x ,  t) after partial differentiation has been carried out. 
e ( x ,  t )  is defined by (4.12) with certain restrictions on &(t)  to be imposed later. 

The equations of 8 6 are valid with the following alterations: 
6 fa&' + m-'V.  a2(VS - eA) = 0 (A6.9) 

and 

i f i fad  +efVs4 +ihm-'(VS-eff). V4 +[-em-'(VS-eA).  A , + f 6 ] 4  = 0 (A6.10) 

if 

(VS - eA) . ve(x, t )  = o 
and 

aS + 4   VS VS - eAl2 + e 6  -d +B - (1 -f)(B + eV,+ S) + (1 - 4)s = 0 

where is defined by (6.12) with a V ,  and S(x, e) is defined by 

(A.1) 

(A6.11) 

(A.2) 

(A.3) 

(A6.15) 

(A6.14) 

The e&) are chosen to satisfy (A.1) and so that the right-hand side of (A6.15) is 
approximately time independent and so consistent with (A.3). The time dependent 
(6.5) demands a smoothness assumption 
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